

DotLiquid Scripting Tags
05/20/2025 3:57 pm CDT

Overview

serviceminder uses DotLiquid as a multi-purpose scripting language for dynamically generating print and email

template content. It is an adaptation of the Liquid scripting language used by Shopify, with a few notable

differences which we attempt to document below.

For a full list of properties accessible via DotLiquid, please visit:

https://serviceminder.com/support/dotliquid

This article will review:

Comment

Control Flow

Iteration

Comment

Allows you to leave un-rendered code inside a Liquid template. Any text within the opening and

closing comment blocks will not be printed, and any Liquid code within will not be executed.

Input

Anything you put between {% comment %} and {% endcomment %} tags
is turned into a comment.

Output

Anything you put between tags
is turned into a comment.

Control Flow

Control flow tags can change the information Liquid shows using programming logic.

if

Executes a block of code only if a certain condition is true .

Input

https://serviceminder.com/support/dotliquid
https://serviceminder.knowledgeowl.com/help/dotliquid-scripting-tags#comment
https://serviceminder.knowledgeowl.com/help/dotliquid-scripting-tags#control-flow
https://serviceminder.knowledgeowl.com/help/dotliquid-scripting-tags#iteration

{% if product.title == "Awesome Shoes" %}
 These shoes are awesome!
{% endif %}

Output

These shoes are awesome!

unless

The opposite of if – executes a block of code only if a certain condition is not met.

Input

{% unless product.title == "Awesome Shoes" %}
 These shoes are not awesome.
{% endunless %}

Output

These shoes are not awesome.

This would be the equivalent of doing the following:

{% if product.title != "Awesome Shoes" %}
 These shoes are not awesome.
{% endif %}

elsif / else

Adds more conditions within an if or unless block.

Input

{% if customer.name == "kevin" %}
 Hey Kevin!
{% elsif customer.name == "anonymous" %}
 Hey Anonymous!
{% else %}
 Hi Stranger!
{% endif %}

Output

Hey Anonymous!

case/when

Creates a switch statement to compare a variable with different values. case initializes the switch statement,

and when compares its values.

Input

{% assign handle = "cake" %}
{% case handle %}
 {% when "cake" %}
 This is a cake
 {% when "cookie" %}
 This is a cookie
 {% else %}
 This is not a cake nor a cookie
{% endcase %}

Output

This is a cake

Iteration

Iteration tags run blocks of code repeatedly.

for

Repeatedly executes a block of code. For a full list of attributes available within a for loop, see forloop (object).

Input

{% for product in collection.products %}
 {{ product.title }}
{% endfor %}

Output

hat shirt pants

else

Specifies a fallback case for a for loop which will run if the loop has zero length.

Input

{% for product in collection.products %}
 {{ product.title }}
{% else %}
 The collection is empty.
{% endfor %}

Output

The collection is empty.

break

Causes the loop to stop iterating when it encounters the break tag.

Input

{% for i in (1..5) %}
 {% if i == 4 %}
 {% break %}
 {% else %}
 {{ i }}
 {% endif %}
{% endfor %}

Output

1 2 3

continue

Causes the loop to skip the current iteration when it encounters the continue tag.

Input

{% for i in (1..5) %}
 {% if i == 4 %}
 {% continue %}
 {% else %}
 {{ i }}
 {% endif %}
{% endfor %}

Output

1 2 3 5

for (parameters)

limit

Limits the loop to the specified number of iterations.

Input

{% for item in array limit:2 %}
 {{ item }}
{% endfor %}

Output

1 2

offset

Begins the loop at the specified index.

Input

{% for item in array offset:2 %}
 {{ item }}
{% endfor %}

Output

3 4 5 6

range

Defines a range of numbers to loop through. The range can be defined by both literal and variable numbers.

Input

{% for i in (3..5) %}
 {{ i }}
{% endfor %}

{% assign num = 4 %}
{% for i in (1..num) %}
 {{ i }}
{% endfor %}

Output

3 4 5
1 2 3 4

reversed

Reverses the order of the loop. Note that this flag’s spelling is different from the filter reverse .

Input

{% for item in array reversed %}
 {{ item }}
{% endfor %}

Output

6 5 4 3 2 1

cycle

Loops through a group of strings and prints them in the order that they were passed as arguments. Each

time cycle is called, the next string argument is printed.

cycle must be used within a for loop block.

Input

{% cycle "one", "two", "three" %}
{% cycle "one", "two", "three" %}
{% cycle "one", "two", "three" %}
{% cycle "one", "two", "three" %}

Output

one
two
three
one

Uses for cycle include:

applying odd/even classes to rows in a table

applying a unique class to the last product thumbnail in a row

cycle (parameters)

cycle accepts a “cycle group” parameter in cases where you need multiple cycle blocks in one template. If no

name is supplied for the cycle group, then it is assumed that multiple calls with the same parameters are one group.

Input

{% cycle "first": "one", "two", "three" %}
{% cycle "second": "one", "two", "three" %}
{% cycle "second": "one", "two", "three" %}
{% cycle "first": "one", "two", "three" %}

Output

one
one
two
two

tablerow

Generates an HTML table. Must be wrapped in opening <table> and closing </table> HTML tags.

Input

{% tablerow product in collection.products %}
 {{ product.title }}
{% endtablerow %}

Output

Cool ShirtAlien PosterBatman PosterBullseye ShirtAnother Classic VinylAwesome Jeans

tablerow (parameters)

cols

Defines how many columns the tables should have.

Input

{% tablerow product in collection.products cols:2 %}
 {{ product.title }}
{% endtablerow %}

Output

Cool Shirt Alien Poster

Batman Poster Bullseye Shirt

Another Classic VinylAwesome Jeans

limit

Exits the tablerow after a specific index.

{% tablerow product in collection.products cols:2 limit:3 %}
 {{ product.title }}
{% endtablerow %}

offset

Starts the tablerow after a specific index.

{% tablerow product in collection.products cols:2 offset:3 %}
 {{ product.title }}
{% endtablerow %}

range

Defines a range of numbers to loop through. The range can be defined by both literal and variable numbers.

{% assign num = 4 %}

{% tablerow i in (1..num) %}
 {{ i }}
{% endtablerow %}

{% tablerow i in (3..5) %} {{ i }} {% endtablerow %}

Raw

Raw temporarily disables tag processing. This is useful for generating content (eg, Mustache, Handlebars) which

uses conflicting syntax.

Input

{% raw %}
 In Handlebars, {{ this }} will be HTML-escaped, but
 {{{ that }}} will not.
{% endraw %}

Output

In Handlebars, {{ this }} will be HTML-escaped, but {{{ that }}} will not.

Variable

Variable tags create new Liquid variables.

assign

Creates a new variable.

Input

{% assign my_variable = false %}
{% if my_variable != true %}
 This statement is valid.
{% endif %}

Output

This statement is valid.

Wrap a variable value in quotations " to save it as a string.

Input

{% assign foo = "bar" %}
{{ foo }}

Output

bar

capture

Captures the string inside of the opening and closing tags and assigns it to a variable. Variables created

through capture are strings.

Input

{% capture my_variable %}I am being captured.{% endcapture %}
{{ my_variable }}

Output

I am being captured.

Using capture , you can create complex strings using other variables created with assign :

Input

{% assign favorite_food = "pizza" %}
{% assign age = 35 %}

{% capture about_me %}
I am {{ age }} and my favorite food is {{ favorite_food }}.
{% endcapture %}

{{ about_me }}

Output

I am 35 and my favourite food is pizza.

increment

Creates a new number variable, and increases its value by one every time it is called. The initial value is 0.

Input

{% increment my_counter %}
{% increment my_counter %}
{% increment my_counter %}

Output

0
1
2

Variables created through the increment tag are independent from variables created

through assign or capture .

In the example below, a variable named “var” is created through assign . The increment tag is then used several

times on a variable with the same name. Note that the increment tag does not affect the value of “var” that was

created through assign .

Input

{% assign var = 10 %}
{% increment var %}
{% increment var %}
{% increment var %}
{{ var }}

Output

0
1
2
10

decrement

Creates a new number variable, and decreases its value by one every time it is called. The initial value is -1.

Input

{% decrement variable %}
{% decrement variable %}
{% decrement variable %}

Output

-1
-2
-3

Like increment, variables declared inside decrement are independent from variables created

through assign or capture .

